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Abstract

The generalized elastic material provides a reference model to cast in a unitary framework many structural
models which are based on nonlinear monotone multivalued relations such as viscoelasticity\ plasticity and
unilateral models[ The modi_ed forms of the HuÐWashizu and HellingerÐReissner principles and the
displacement!based variational formulation are recovered for the generalized elastic material starting from
a functional in the complete set of state variables[ The related limitation principles are derived and their
specialization to elasticity and elastoplasticity with mixed hardening are provided[ It is shown that the
interpolating _elds for the pressure and the volumetric strain usually adopted in the B!bar method lead to a
limitation principle[ Accordingly the same elastic and elastoplastic solutions can be obtained by means of
an approximate mixed displacement:pressure variational principle[ A second application is concerned with
the conditions ensuring the coincidence of the solutions between an approximate two!_eld mixed formulation
and the displacement!based method[ Numerical examples are provided to show the coincidence of the
solutions obtained from di}erent mixed _nite element formulations\ in elasticity or elastoplasticity\ under
the validity of the limitation principles[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Mixed variational formulations are adopted to develop mixed _nite element methods for the
treatment of incompressible or nearly incompressible problems[ In the elastic range the volume
constraint arises from the assumption of an incompressible or almost incompressible behaviour
which represents a proper schematization for rubber!like materials\ solid propellants\ polymers\
etc[ In elastoplasticity\ incompressibility comes from the assumption of an isochoric plastic ~ow[

For almost incompressible materials\ the displacement!based _nite element method provides
incorrect stress _elds\ particularly for the pressure\ and locks in the sense that there is a loss of
accuracy in the computed response as incompressibility is enforced\ see e[g[ Sussman and Bathe
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"0876#[ If incompressibility is enforced\ it is unreasonable to expect a correct prediction of the
stress _eld since the pressure _eld is uncoupled from the displacement _eld and must be calculated
from the equilibrium equation[ Moreover it is impossible to compute the failure load if the material
has an elasticÐperfectly plastic behaviour "Nagtegaal et al[\ 0863#[

Multi_eld variational principles eliminate the di.culties encountered in the single!_eld vari!
ational principle[ A modi_ed version of the HellingerÐReissner principle can be used to provide a
displacement:pressure mixed _nite element approximation for incompressible linear and nonlinear
elastic materials and for elastoplastic problems\ see e[g[\ Key "0858#\ Nagtegaal et al[ "0863#\
Sussman and Bathe "0876#[ An alternative approach can be recovered starting from a modi_ed
form of the HuÐWashizu principle in which the displacement\ the pressure and the volumetric
strain are the independent _elds[ It is named the B!bar method and is often referred to in the
computational literature "Simo et al[\ 0874^ Zienkiewicz and Taylor\ 0880^ Comi and Perego\ 0884^
Weiss et al[\ 0885#[

Although solutions derived from the variational principle pertaining to the continuum problem
coincide\ those derived from approximate variational principles are di}erent unless a limitation
principle occurs "Stolarski and Belytschko\ 0876^ Zienkiewicz and Taylor\ 0880^ Alfano and
Marotti de Sciarra\ 0885#[ In this case no additional accuracy has to be expected from a mixed
formulation[

The objective of this work is to determine the conditions which lead to the coincidence of
the solutions derived from approximate variational formulations depending on di}erent sets of
interpolating variables[

To analyse this problem for di}erent structural models from a unitary point of view\ a general
structural theory can be developed\ providing general methods of investigation[

Many constitutive models "such as viscoelasticity\ elastoplasticity and unilateral models# can be
described in terms of nonlinear monotone multivalued relations[ These models can be cast in the
unitary framework provided by the generalized elastic material "Romano\ 0883# which is based on
an extension of the classical potential theory to the case of monotone multivalued operators
"Romano et al[\ 0882b#[

The variational formulation in the whole set of state variables is recovered by a direct integration
of the structural operator associated with the generalized elastic material[ The complete set of
limitation principles is provided in this paper with reference to the approximate variational
formulations thus generalizing the one stated in Alfano and Marotti de Sciarra "0885#[

The limitation principles associated with the HuÐWashizu and HellingerÐReissner principles
and with the displacement!based variational formulation are discussed in detail for the generalized
elastic material[ They are specialized to approximate variational formulations widely adopted in
elasticity and in elastoplasticity without repeating ad hoc reasoning[

In particular we show that the interpolating _elds usually adopted in the B!bar method\ see
e[g[\ Zienkiewicz and Taylor "0880#\ Weiss et al[ "0885# ful_l a limitation principle so that the
displacement:pressure formulation provides the same approximated displacement and pressure
_elds of the B!bar method[

Moreover a limitation principle provides a new analytical condition to check whether the
solutions derived from the approximate mixed displacement:pressure formulation and from the
displacement!based method coincide in terms of the displacement _eld[

The generalized elastic material is then specialized to an elastoplastic behaviour with hardening
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"Halphen and Nguyen\ 0864^ Lubliner\ 0889# and the elastoplastic counterparts of the B!bar
method and of the mixed displacement:pressure formulation are recovered[ The related limitation
principle is thus obtained from the general treatment and it is exploited to prove that the inter!
polating _elds assumed in Simo et al[ "0874# meet a limitation principle[

For elastic and elastoplastic models numerical examples with di}erent values of the Poisson|s
ratio are examined[ The same solutions are recovered from di}erent mixed _nite element for!
mulations since interpolations of state variables which ful_l the limitation principles are considered[

1[ Generalized elastic material

Generalized elasticity provides a reference constitutive model which can be referred to in the
analysis of a wide class of structural problems involving linear and nonlinear constitutive relations[

Let D and S be the dual vector spaces of strain _elds o and of stress _elds s[ The Generalized
Elastic Material "GEM# has no memory since the relation between dual quantities o and s depends
on their actual value[

The constitutive relation E] D : S between strain and stress _elds is characterized by the
following properties of its graph G"E#]

"i# G"E# is maximal monotone and conservative\
"ii# dom E and dom E−0 are convex sets[

A pair "o\ s# $ D×S ful_ls the constitutive relation E if it belongs to the graph G"E#]

"o\ s# $ G"E#\ s $ E"o#\ o $ E−0"s#[ "0#

Monotonicity of G implies that the material tangent sti}ness must be nonnegative[ Maximal
monotonicity ensures that the point values of the generalized elastic relation E and of its inverse
E−0 are convex sets[

The multivalued elastic map E is assumed to be conservative[ Accordingly the work associated
with any stress _eld s $ E"o# along any closed polyline Po contained in the domain of E vanishes]

GPo

ðE"o#\ doŁ � 9 [Po U dom E[ "1#

The conservativity of E implies that the multivalued inverse map E−0 is conservative as well[ A
detailed presentation of the potential theory for monotone multivalued operators can be found in
Romano et al[ "0882b#[

The conservativity of the two maps E and E−0 ensures the existence of two complementary
convex potentials F] D : R k "¦�# and C] S : R k "¦�# de_ned on dom E and dom E−0

which are given by]

F"o#−F"o9# � g
o

o9

ðE"o¹#\ do¹Ł C"s#−C"s9# � g
s

s9

ðE−0"s¹ #\ ds¹Ł\

and are set ¦� outside their domains[
In the sequel\ we will consider a GEM with a regular constitutive relation\ i[e[]
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C�"o# � F"o# � sup
s¹$S

"ðs¹ \ oŁ−C"s¹ ## [o $ D

F�"s# � C"s# � sup
o¹$D

"ðs\ o¹Ł−F"o¹## [s $ S[

The convex functionals F� and C� are known in convex analysis as the Fenchel|s conjugates
"Rockafellar\ 0869# of F and C[

The generalized elastic relation "0# can then be rewritten in terms of the subdi}erentials of F
and F� as]

"o\ s# $ G"E#\ s $ 1F"o#\ o $ 1F�"s#[ "2#

From a mechanical point of view the convex potentials F"o# and F�"s# represent the elastic energy
and the complementary elastic energy for the GEM[

2[ Structural model

Let U be the linear space of displacement _elds and F be the dual linear space of external forces
which are given by the sum of the applied load l and of the reactions r of external constraints[

In a geometrically linear range\ the equilibrium equation and the compatibility relation are
expressed as follows]

l¦r � T?s o � Tu

where the linear equilibrium operator T ?] SŁF is dual of the linear kinematic operator T] UŁD
"Panagiotopoulos\ 0874#[

Introducing the concave potential Y] UŁR k "−�#\ the external constitutive relation between
reactions and displacement _elds can be written in the general form]

r $ 1Y"u#\ u $ 1Y�"r#

where Y� is the conjugate of Y[
In the case of external frictionless bilateral constraints with an imposed displacement w\ admiss!

ible displacement _elds u belong to the a.ne variety L � w¦L9 U U\ being L9 the subspace of the
admissible displacement _elds which satisfy the boundary conditions[

The subspace of external reactions is R � L_
9 U F where L_

9 represents the orthogonal com!
plement of the subspace L9[ The expressions of the concave potentials Y and Y� are then given by]

Y"u# � = =L9
"u−w# Y�"r# � = =L_

9
"r#¦ðr\ wŁ

where = = is the concave indicator[
The structural problem for the GEM is thus governed by the following set of relations]

T?s � l¦r static equilibrium

Tu � o kinematic compatibility

s $ 1F"o# generalized constitutive relation

u � 1Y�"r# external constraint[ "3#
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2[0[ Variational formulations

We can arrange relations "3# to build up a global multivalued structural operator governing the
generalized model whose explicit form is]

A �

K

H

H

H

H

k

9 T? 9 −IF

T 9 −ID 9

9 −IS 1F 9

−IU 9 9 1Y�

L

H

H

H

H

l

[

The structural operator A is given by the sum of a linear symmetric operator\ and hence
conservative\ and of two conservative monotone multivalued operators] 1F nondecreasing in o

and 1Y� nonincreasing with respect to r[ The relevant potential V can be directly obtained by
integrating A along a ray individuated by the point "u\ s\ o\ r#\ see Romano et al[ "0882a# for _nite!
step elastoplasticity and Romano et al[ "0881# for nonlinear models[ The expression of V is given
by]

V"u\ s\ o\ r# � F"o#¦Y�"r#¦ðs\ TuŁ−ðl¦r\ uŁ−ðs\ oŁ "4#

and turns out to be linear in "u\ s#\ convex in o and concave in r for any applied load l[
Hence we have]

Proposition 2[0[ A vector "u\ s\ o\ r# is a saddle point solution of the problem

stat
u\s

min
o

max
r

V"u\ s\ o\ r#

if and only if it is a solution of the generalized structural problem[ �

Remark 2[0[ It is worth noting that the functional V is obtained by a direct integration of the
structural operator A associated with "3# and thus its stationarity is equivalent to the generalized
model "3#[ Ž

A family of variational principles\ with di}erent numbers of unknowns\ can be derived from the
potential V by enforcing the ful_lment of _eld equations and of constitutive relations[ All these
principles provide the same solution of the structural problem "3# if no approximation of the
ambient spaces is introduced[

2[0[0[ A three!_eld variational principle
To obtain a variational formulation in terms of the spherical part of the stress and of the strain

_elds\ the variational principle depending on the three independent _elds "u\ s\ o# is _rst derived[
The external constraint relation "3#3 can be equivalently expressed in terms of the following

Fenchel|s equality]

Y�"r#¦Y"u# � ðr\ uŁ

which\ substituted in the expression of the potential V\ yields]



L[ De Vivo\ F[ Marotti de Sciarra : International Journal of Solids and Structures 25 "0888# 4066Ð41954071

Proposition 2[1[ Generalized HuÐWashizu principle[ A vector "u\ s\ o# is a solution of the min!
imization problem]

stat
s

min
u\o

V0"u\ s\ o#

where]

V0"u\ s\ o# � F"o#−Y"u#¦ðs\ TuŁ−ðl\ uŁ−ðs\ oŁ

if and only if it is a solution of the generalized structural problem[ �

2[1[ Spherical and deviatorical split

The volumetric and deviatoric responses are in general coupled[ However in many situations we
may assume that the generalized energy F can be additively decomposed into two parts depending
separately on the volumetric and deviatoric strain _elds]

F"o# � F0"PDo#¦F1"PSo#\ "5#

see Simo et al[ "0874# in _nite deformations and Weiss et al[ "0885# with respect to highly
deformable biological soft tissue[ The operators PS and PD are the projectors onto the spaces of
spherical and deviatoric strain _elds\ respectively[

The conjugate F� of the generalized energy "5# is given by the sum of the conjugate functionals
of F0 and F1[ In fact\ we have]

F�"s# � sup
o¹$D

"ðs\ o¹Ł−F"o¹##

� sup
PDo¹\PSo¹

"ðPDs\ PDo¹Ł¦ðPSs\ PSo¹Ł−F0"PDo¹#−F1"PSo¹##

� F�0"PDs#¦F�1"PSs#\ "6#

where the orthogonality condition between deviatoric and spherical _elds has been exerted[ An
example of the determination of F�1 in elasticity is reported in Reissner "0873#[

Variational formulations for the GEM in terms of the spherical part of the stress and of the
strain _elds can be recovered from the generalized HuÐWashizu principle[

In fact by enforcing in the expression of the functional V0 the deviatoric part of the kinematic
compatibility relation "3#1]

PDTu � PDo

and by replacing the generalized energy F by the additive decomposition "5# we get]

Proposition 2[2[ Modi_ed HuÐWashizu principle[ A vector "u\ PSs\ PSo# is a solution of the min!
imization problem]

stat
PSs

min
u\PSo

V1"u\ PSs\ PSo#

where]

V1"u\ PSs\ PSo# � F0"PDTu#¦F1"PSo#−Y"u#¦ðPSs\ PS"Tu−o#Ł−ðl\ uŁ
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if and only if it is a solution of the generalized structural problem[ �

The structural model derived from the above variational principle is obtained by enforcing that
"u\ PSs\ PSo# is a stationarity point for V1\ i[e[]

"9\ 9\ 9# $ 1V1"u\ PSs\ PSo#

which is\ by de_nition]

9 ¾ dV1"u\ PSs\ PSo^ u¹# [u¹ $ U

9 � dV1"u\ PSs\ PSo^ PSs¹ # [PSs¹ $ S

9 ¾ dV1"u\ PSs\ PSo^ PSo¹# [PSo¹ $ D[

The evaluation of the above directional derivatives yields the following expressions]

dF0"PDTu^ PDTu¹#¦ðPSs\ PSTu¹Ł − ðl\ u¹Ł u−w $ L9 [u¹ $ L9

ðPSs¹ \ PS"Tu−o#Ł � 9 [PSs¹ $ S

dF1"PSo^ PSo¹#−ðPSs\ PSo¹Ł − 9 [PSo¹ $ D

"7#

where the condition of external bilateral constraints has been enforced[ They provide an alternative
weak formulation of the structural model "3#[ In fact relation "7#0 is the weak form of the
equilibrium equation in which the deviatoric stress _eld is obtained from the generalized energy
F0 in terms of a deviatoric compatible strain _eld[ Equation "7#1 provides the weak form of the
spherical part of the compatibility condition and inequality "7#2 represents the weak form of the
spherical part of the constitutive relation[

A two _eld variational principle can now be derived from V1[ If the spherical part of the
generalized constitutive relation "3#2 is ful_lled then\ in terms of Fenchel|s equality\ it turns out to
be]

F1"PSo#¦F�1"PSs# � ðPSs\ PSoŁ[

This equality can be inserted in the expression of V1 to get]

Proposition 2[3[ Modi_ed HellingerÐReissner principle[ A vector "u\ PSs# is a saddle point solution
of the problem

min
u

max
PSs

V2"u\ PSs#

where]

V2"u\ PSs# � F0"PDTu#−F�1"PSs#−Y"u#¦ðPSs\ PSTuŁ−ðl\ uŁ

if and only if it is a solution of the generalized structural problem[ �

The structural model associated with the modi_ed form of the HellingerÐReissner principle is
obtained by enforcing the stationarity of the potential V2]

"9\ 9# $ 1V2"u\ PSs#

which is equivalent\ by de_nition\ to the inequalities]
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9 ¾ dV2"u\ PSs^ u¹# [u¹ $ U

9 − dV2"u\ PSs^ PSs¹ # [PSs¹ $ S

The evaluation of the above directional derivatives yields the following expressions]

dF0"PDTu^ PDTu¹#¦ðPSs\ PSTu¹Ł − ðl\ u¹Ł u−w $ L9 [u¹ $ L9

dF�1"PSs^ PSs¹ # ¾ ðPSs¹ \ PSTuŁ [PSs¹ $ S
"8#

which provide the structural problem "3# in a weak form[ Relation "8#0 is the weak form of the
equilibrium equation in which the deviatoric stress _eld is obtained from the generalized energy
F0 in terms of a deviatoric compatible strain _eld[ Inequality "8#1 provides the weak form of the
spherical part of the generalized constitutive relation between spherical stresses and spherical
compatible strain _elds[

The spherical part of the stress can be dropped from the modi_ed HellingerÐReissner variational
principle by imposing the ful_lment of the generalized constitutive relation between spherical stress
_elds and compatible spherical strain _elds]

PSs $ 1F1"PSTu#\F1"PSTu#¦F�1"PSs# � ðPSs\ PSTuŁ[

Hence we have]

Proposition 2[4[ Generalized total potential energy[ A displacement _eld u is a solution of the
minimization problem]

min
u

V3"u#

where]

V3"u# � F0"PDTu#¦F1"PSTu#−Y"u#−ðl\ uŁ

if and only if it is a solution of the generalized structural problem[ �

3[ Two limitation principles

Let us prove the conditions ensuring that solutions derived from approximate variational
principles are coincident[ The approximate structural models derived from the modi_ed form of
the HuÐWashizu and HellingerÐReissner variational principles and from the generalized total
potential energy are considered[

The interpolating spaces of the variables involved in the variational formulations will be left
purposely unspeci_ed in order to perform a general treatment which can be applied to a wide
range of situations[ It is convenient to assume the admissible displacement _eld v � u−w $ L9 as
unknown[

The approximate form of the potential V1 is considered _rst[ The _nite dimensional interpolating
spaces for the variables\ v\ PSs\ PSo are Un\ Sm\ Dq where the pedices of the spaces represent their
dimension[ Without loss of generality\ it can be assumed that Un U L9^ in fact\ even if Un S L9\ only
the intersection Un K L9 plays the role of admissible subspace for the interpolating displacement
variations[
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The interpolating variables will be denoted by the apex {bullet| and they belong to the relevant
interpolating spaces]

vž $ Un sž

s $ Sm ož

s $ Dq[ "09#

The approximate potentials will be denoted by a superimposed hat[
The approximate expression of the three!_eld potential reported in the Proposition 2[2 is

obtained by replacing the state variables "u\ PSs\ PSo# of the continuum problem with their inter!
polating counterparts "09#]

V
1"vž\ sž

s \ ož

s # � F0 ðPDT"w¦vž#Ł¦F1"ož

s #−Y"w¦vž#

¦ðsž

s \ PST"w¦vž#−ož

s Ł−ðl\ w¦vžŁ[ "00#

A solution of the approximate structural problem is thus obtained as

stat
sž

s

min
vž\ož

s

V
1"vž\ sž

s \ ož

s #[ "01#

The approximate generalized problem related to the potential V2 is then considered[ The inter!
polating variables are]

vž $ Un sž

s $ Sm[ "02#

The approximate two!_eld potential can be obtained from V2 by replacing the state variables
"u\ PSs# with their interpolating counterparts "02#]

V
2"vž\ sž

s # � F0 ðPDT"w¦vž#Ł−F�1"sž

s #−Y"w¦vž#¦ðsž

s \ PST"w¦vž#Ł−ðl\ w¦vžŁ "03#

and a solution of the related structural problem is given in the form

min
vž

max
s

ž

s

V
2"vž\ sž

s #[ "04#

The limitation principle between the approximate functionals V
1"vž\ sž

s \ ož

s # and V
2"vž\ sž

s # can
now be stated[

Denoting by 1F1"Dq# the image of the restrictions of the subdi}erential operator 1F1 to the
space Dq\ i[e[ the approximate spherical part of the generalized constitutive relation\ we have]

Proposition 3[0[ The solutions of the two approximate problems derived from the stationarity
conditions "01# and "04# coincide in terms of "vž\ sž

s # if the same interpolating spaces Un\ Sm are
assumed and if

Sm U 1F1"Dq#[ "05#

Proof[ Let us preliminarily recall that the spherical part of the generalized complementary energy
F1� is the conjugate of the spherical part of the generalized energy F1 "6#]

F�1"PSs# � sup
PSo¹$D

"ðPSs\ PSo¹Ł−F1"PSo¹## � ðPSs\ PSoŁ−F1"PSo#[

The {sup| is attained at a point "PSo\ PSs# which ful_ls the spherical part of the constitutive relation
PSs $ 1F1"PSo#[
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The inclusion "05# ensures that for any approximate spherical stress sž

s $ Sm there exists an
approximate spherical strain ož

s $ Dq such that the spherical part of the generalized constitutive
relation is ful_lled]

[sž

s $ Sm \ož

s $ Dq = sž

s $ 1F1"ož

s #[ "06#

The subdi}erential relation appearing in "06# is the same as enforcing the following Fenchel|s
equality]

F�1a"sž

s # � sup
o¹ž
s $Dq

"ðsž

s \ o¹ž

s Ł−F1"o¹ž

s ## � ðsž

s \ ož

s Ł−F1"ož

s #[ "07#

According to "06#\ the {sup| in "07# is attained at ož

s $ Dq U D so that the supremum can equivalently
be performed over the entire space D[ The potential F�1a turns then out to be the restriction of F�1
to Sm U S[

Substituting the relation "07# written as]

−F�1"sž

s # � F1"ož

s #−ðsž

s \ ož

s Ł

in the expression of the potential V
1\ we get the potential V
2 and the limitation principle is
proved[ �

For the subsequent analysis\ a limitation principle between the modi_ed form of the HellingerÐ
Reissner principle and the displacement!based variational formulation is derived[

Assuming vž $ Un\ the approximate potential V
3 is given by]

V
3"vž# � F0 ðPDT"w¦vž#Ł¦F1 ðPST"w¦vž#Ł−Y"w¦vž#−ðl\ w¦vžŁ "08#

and the related stationarity condition is]

min
vž

V
3"vž#[ "19#

The following limitation principle can now be stated]

Proposition 3[1[ The solutions of the approximate problems derived from the stationarity conditions
"04# and "19# coincide in terms of "vž# if the same interpolating space Un is assumed and if

PST"w¦Un# U 1F�1"Sm#[ "10#

Proof[ The inclusion "10# ensures that for any admissible interpolating displacement there exists
an interpolating spherical stress such that the spherical part of the generalized constitutive relation
is ful_lled]

[vž $ Un \sž

s $ Sm = PST"w¦vž# $ 1F�1"sž

s #[ "11#

The subdi}erential relation in "11# is the same as enforcing the Fenchel|s equality]

F1aðPST"w¦vž#Ł � sup
s¹ž

s $Sm

"ðs¹ž

s \PST"w¦vž#Ł−F�1## �ðsž

s \PST"w¦vž#Ł−F�1"sž

s # "12#

where\ according to "11#\ the {sup| is attained at sž

s $ Sm U S[ The supremum can be equivalently
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Table 0
The complete set of limitation principles for
the generalized elastic material

Interpolating _eld Condition

rž w¦Un U 1Y�"Rk#
ož Sh U 1F"Dp#
vž T ?Sh U 1Y"w¦Un#
sž T"w¦Un# U 1F�"Sh#

performed over the entire space S and the potential F1a turns out to be the restriction of F1 to
PST"w¦Un#[

Substituting the Fenchel|s relation "12# in terms of the approximate variables]

F1 ðPST"w¦vž#Ł � ðsž

s \ PST"w¦vž#Ł−F�1"sž

s #

in the expression of the potential V
2\ the potential V
3 is provided and the theorem is thus
proved[ �

Remark 3[0[ The complete family of variational formulations for the GEM can be derived from
the potential "4# and is reported in Romano "0883#[ The approximate discrete structural model
associated with each variational principle is obtained by assuming that the four variables v\ s\ o

and r belong to _nite!dimensional interpolating spaces Un\ Sh\ Dq and Rk[
The limitation principles associated with the approximate variational formulations for the GEM

can be proved by following the same steps performed in Propositions 3[0 and 3[1[ For the sake of
brevity their proofs are omitted[

Moreover it can be shown that a limitation principle relating two di}erent formulations depends
on which state variable is interpolated in one formulation and not in the other one[ The complete
set of limitation principles for the GEM is thus reported in Table 0 and generalizes the
corresponding one provided in Alfano and Marotti de Sciarra "0885# in the context of linear
elasticity[ Ž

In the next section the results previously obtained for the GEM are specialized to elastic and
elastoplastic models[

4[ B!bar method versus displacement:pressure formulation

Monotonicity of the graph G"E# for the GEM and the conditions domE � D and dom E−0 � S
ensure that the potentials F and F� turn out to be convex\ but\ in general\ they are not strictly
convex or di}erentiable[

To recover the classical theory of elasticity\ the graph G"E# is then assumed strictly monotone
and hence the elastic energy F and the complementary elastic energy F� are both strictly convex[
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Since the strict convexity of one of them implies the di}erentiability of the other one and vice!
versa\ it follows that both potentials turn out to be di}erentiable[ The elastic behaviour is then
one!to!one and relations "0# can be written as s � Eo and o � E−0s[

Further the assumed conservativity of the constitutive sti}ness E yields its symmetry by virtue
of the Volterra|s condition "Vainberg\ 0853# and the strict convexity of the elastic potentials implies
that E and E−0 are positive de_nite[ Accordingly\ the potentials F and F� will be given by the
positive de_nite quadratic forms]

`el "o# � F"o# � 0
1
ðEo\ oŁ "`el#�"s# � F�"s# � 0

1
ðs\ E−0sŁ[ "13#

In the context of elasticity\ problems arising from the numerical treatment of the incom!
pressibility constraint have received great attention in the literature\ see e[g[\ Oden and Carey
"0872#\ Gadala and Oravas "0873#\ Gadala "0875#\ Simo and Taylor "0880#[

A popular approach is based on a modi_cation of the discrete gradient operator and in the
computational literature it is often referred to as the B!bar method "Zienkiewicz and Taylor\ 0880#[
It stems from the modi_ed form of the HuÐWashizu principle reported in Proposition 2[2 and a
synthetic derivation is hereafter presented[

, The B!bar method[ The weak form of the elastic structural model is obtained from the cor!
responding weak form "7# of the GEM by setting `el

D � F0 and `el
S � F1]

ðd`el
D"PDTu#\ PDTu¹Ł¦ðPSs\ PSTu¹Ł � ðl\ u¹Ł u−w $ L9 [u¹ $ L9

ðPSs¹ \ PS"Tu−o#Ł � 9 [PSs¹ $ S

ðd`el
S "PSe#\ PSo¹Ł−ðPSs\ PSo¹Ł � 9 [PSo¹ $ D[

"14#

A standard discretization of the domain B in _nite elements is performed by means of a _nite
family of nonoverlapping subdomains Be where e � 0\ [ [ [ \ A such that kA

e�0 BÞe � BÞ\
Be0 K Be1 � / for every e0 � e1[

The approximate weak form of the structural problem is obtained from "14# by replacing the
state variable _elds with the admissible interpolating displacement _eld vž\ the interpolating
pressure _eld rž and the interpolating volumetric strain _eld Už[

Over a typical element Be\ the displacement approximation and the related compatible strains
are introduced by setting]

vž"x# � s
n

i�0

Nu
i "x#vi Tvž"x# � s

n

i�0

TNu
i "x#vi � s

n

i�0

Bi"x#vi "15#

where Nu
i are the standard element displacement shape functions[

As usually assumed in the literature\ see e[g[ Simo et al[ "0874#\ Weiss et al[ "0855#\ Zienkiewicz
and Taylor "0880#\ the _nite!dimensional interpolating spaces for the volumetric strain _eld and
for the pressure _eld are spanned by the same set of shape functions "Mi"x## where i � 0\ [ [ [ \ m[
Accordingly one has]

Už"x# � s
m

i�0

Mi"x#Ui � M"x# = U rž"x# � s
m

i�0

Mi"x#ri � M"x# = r "16#

and no interelement continuity is enforced on Už and rž[
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The divergence of the interpolating displacement _eld vž on the _nite element Be is given by]

div vž"x# � I ( s
n

i�0

Bi"x#vi � s
n

i�0

bi"x# = vi "17#

where bi � Bt
iI\ i[e[ "bi#k �"Bi#kljIij[ Setting]

He � gBe

M"x# & M"x# dx

equality "14#1 provides the volumetric strain parameters U pertaining to the element Be]

U � He−0 gBe

M"x# div ðw"x#¦vž"x#Ł dx � "He#−0 s
n

i�0 gBe

M"x# & bi"x# dx"wi¦vi#[ "18#

Denoting by ¼̀ el
S "Už# � `el

S "ož

s # the elastic energy expressed in terms of the interpolating volumetric
strain _eld\ equality "14#2 provides the pressure parameters r]

r � "He#−0 gBe

d ¼̀ el
S "Už#M"x# dx[ "29#

In isotropic linear elasticity\ the spherical part of the elastic energy is given by
¼̀ el

S "U# � K:1ðU\ UŁ\ so that d ¼̀ el
S "Už# � KM = U and "29# becomes

r � KU[ "20#

The discrete equilibrium equation is obtained by substituting the interpolating _elds expressed
in terms of parameters "18# and "20# in the relevant _elds appearing in "14#0 to get]

s
n

i\j�0 gBe

EBÞi"wi¦vi# ( BÞ jv¹ j dx � s
n

j�0

lj = v¹ j [v¹ j $ Rn[ "21#

The modi_ed discrete gradient operator BÞi � BDi¦BÞSi represents the B!bar matrix and di}ers from
the usual matrix Bi in the symmetric part BÞSi]

BÞSivi �
0
2
"b¹ i = vi#I where b¹ t

i "x# � Mt"x#"He#−0 gBe

M"x# & bi"x# dx[

The formulation "21# reduces to the B!bar method reported in Zienkiewicz and Taylor "0880#
by replacing the tensorial notation with a vectorial one and noting the following identities]
He � EZ\ ÐBe b & M dx � CZ and BÞS � 0:2mZNp

ZE−0
Z Ct

Z where mZ depends on the problem at hand^
for a three!dimensional model it is mZ � ð0 0 0 9 9 9Łt[

, The displacement:pressure formulation[ Mixed displacement:pressure approximations\ see Nag!
tegaal et al[ "0863#\ Key "0858#\ can be obtained from the modi_ed version of the HellingerÐ
Reissner principle presented in the previous section[

The weak form of the elastic structural model is obtained from equations "8#]
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ðd`el
D"PDTu#\ PDTu¹Ł¦ðPSs\ PSTu¹Ł � ðl\ u¹Ł u−w $ L9 [u¹ $ L9

ðPSs¹ \ d"`el
S #�"PSs#Ł−ðPSs¹ \ PSTuŁ � 9 [PSs¹ $ S[

"22#

The displacement approximation over a typical _nite element Be is de_ned according to "15#[
The _nite!dimensional interpolating space for the pressure _eld is spanned by the set of shape
functions "Mi"x## where i � 0\ [ [ [ \ m[ The interpolating pressure is given by "16#1 and is constructed
for each element individually so that it is not continuous across element boundary[

In the case of isotropic linear elasticity\ the weak eqns "22# become]

s
n

i�0 gBe

M & bi dx"wi¦vi# = r¹−gBe

0
K

M & M dxr = r¹ � 9 [r¹ $ Rm

s
n

i\j�0 gBe

1GBDi"wi¦vi# = BDjv¹ j dx¦ s
n

j�0 gBe

bj & M dxr = v¹ j � s
n

j�0

lj = v¹ j [v¹ j $ Rn

[ "23#

It is immediate to show that eqns "23# can be specialized to the ones reported in Zienkiewicz and
Taylor "0880#[

4[0[ The limitation principle

Denoting by ES the spherical part of the material elastic sti}ness E\ Proposition 3[0 becomes]

Proposition 4[0[ The solutions of the two approximate elastic problems derived from the weak
forms "14# and "22# corresponding to the B!bar method and to the displacement:pressure for!
mulation coincide in terms of "vž\ sž

s # if the same interpolating spaces Un\ Sm are considered and
if

Sm U ESDq[ "24# �

In isotropic elasticity\ the spherical part of the constitutive relation is a scalar condition so that
the limitation principle above holds true if the interpolating space for the pressure _eld is contained
in the space of the interpolating volumetric strain _eld\ i[e[ Sm U Dq[ In the literature\ see e[g[\
Simo et al[ "0874#\ Weiss et al[ "0885#\ Zienkiewicz and Taylor "0880#\ as well as in computer
codes\ the interpolating spaces for the pressure _eld and for the volumetric strain _eld turn out to
be coincident since the same set of shape functions "Mi# is considered[ The limitation principle
stated in the Proposition 4[0 is ful_lled and the two!_eld displacement:pressure approximation can
be successfully adopted instead of using the B!bar formulation[

4[0[0[ A numerical simulation
Two numerical examples are provided to show the e}ectiveness of the limitation principle[ The

former is based on the B!bar formulation "21# and the latter deals with the mixed dis!
placement:pressure method "23#[

Over a single quadrilateral _nite element\ a bilinear isoparametric interpolation for the dis!
placement _eld is employed together with constant pressure for the displacement:pressure
approach\ and constant pressure and constant volumetric strain for the B!bar method[
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Remark 4[0[ A bilinear isoparametric interpolation for the displacement _eld with constant pressure
locks\ i[e[ it shows a loss of accuracy in the computed response as incompressibility is enforced[
The degree of locking is quite small if compared with the response of an eight!node displacement
element with three or four pressure parameters or with the nine!node displacement element with
four pressure parameters "Sussman and Bathe\ 0876#[ A pressure _lter can be devised in order to
adjust the approximate pressure _eld so that the BabuskaÐBrezzi condition "Babuska\ 0862^ Brezzi\
0863^ Brezzi and Fortin\ 0880^ Pastor et al[\ 0886# is satis_ed independently of the mesh\ see e[g[\
Oden and Carey "0872#\ Pitkaranta and Stenberg "0873#\ Oden and Kikuchi "0871#[ Ž

The elastic distorted tapared plate shown in Fig[ 0 is considered where "a#\ "b# and "c# represent
the three considered discretizations[ The Young|s modulus is E � 69 KN:mm1 and the three
di}erent values of the Poisson|s ratio are n0 � 9[2\ n1 � 9[3\ n2 � 9[3888[ The load condition is
represented by a tangential vertical load q � 09 N:mm1[

In Fig[ 1 the displacements of the top corner node are reported^ they are evaluated for the
di}erent meshes of Fig[ 0 and for the three values of the Poisson|s ratio[ The pressure p is addressed
in Figs 2Ð4 for the elements belonging to the bottom edge of the meshes shown in Fig[ 0[ Actually\
displacements and stresses computed by the B!bar formulation and by the displacement:pressure
turn out to be coincident in accordance with the limitation principle[

5[ Displacement:pressure formulation versus displacement method

In the context of elasticity and elastoplasticity\ modi_ed versions of the HellingerÐReissner
variational principle have often been used by constructing displacement:pressure mixed approxi!
mations "Nagtegaal\ 0863^ Key\ 0858#[ The equivalence of mixed methods with discontinuous
pressure approximations and displacement methods employing selective reduced integration tech!
niques has been investigated by many authors\ e[g[\ Oden and Carey "0872#\ Oden and Kikuchi
"0871#\ Hughes "0866#\ Malkus and Hughes "0867#[

A general condition for the equivalence between the mixed displacement:pressure formulation
and the displacement approach can be deduced from the Proposition 3[1 and is reported in the
next

Proposition 5[0[ The solutions of the approximate linear elastic problems derived from the weak
form of the displacement:pressure approach "22# and from the displacement formulation coincide
in terms of "vž# if the some interpolating space Un is considered and if

PSTUn U E−0
S Sm[ "25# �

This limitation principle provides a theoretical basis to the numerical argumentation reported
in Sussman and Bathe "0876# to _nd a condition for the coincidence of the _nite element solutions
in terms of displacements between the displacement:pressure approach and the displacement
formulation[

As an example\ a plane strain four!node quadrilateral element is considered and its local
numbering is reported in Fig[ 5[ Only one _nite element Be is addressed since the volumetric strain
_eld and the pressure _eld are discontinuous across adjacent elements[

It will be shown hereafter that the limitation principle is ful_lled if the parameters for the
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Fig[ 0[ The discretization of the tapered plate[ "a# 1×1 side elements\ "b# 3×3 side elements\ "c# 7×7 side elements[
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Fig[ 1[ The displacements of the top corner node of the tapared plate obtained from the B!bar method and the u:p
formulation under the validity of the limitation principle for the three values of the Poisson|s ratio[

Fig[ 2[ The pressure for the elements of the bottom edge of the mesh of Fig[ 0a is obtained from the B!bar method and
the u:p formulation under the validity of the limitation principle[

interpolating pressure _eld are chosen at the four Gauss points of the elements[ Hence the solutions
of the displacement:pressure mixed approximation coincide with the solutions of the displacement
method in terms of the displacement _eld[ Di}erent kinds of elements can be tested following the
same procedure[

In terms of local coordinates "j\ h# the shape functions for each component of the displacement
are the continuous functions]
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Fig[ 3[ The pressure for the elements of the bottom edge of the mesh of Fig[ 0b is obtained from the B!bar method and
the u:p formulation under the validity of the limitation principle[

Fig[ 4[ The pressure for the elements 0\ 06\ 22 and 38 belonging to the bottom edge of the mesh of Fig[ 0c is obtained
from the B!bar method and the u:p formulation under the validity of the limitation principle[

ci"j\ h# �
0
3
"0¦aij#"0¦bih#

F

G

j

J

G

f

a0 � −0

a1 � 0

a2 � 0

a3 � −0

F

G

j

J

G

f

b0 � −0

b1 � −0

b2 � 0

b3 � 0

The numerical vector u of the displacement parameters for the element Be is ordered in the standard
manner u � ðuj uhŁt where uj � ðu0\ [ [ [ \ u3Łt and uh � ðv0\ [ [ [ \ v3Łt[
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Fig[ 5[ The four node master element Be\ , � interpolation nodes for displacements^ ¦ � interpolation nodes for the
pressure which coincide with the Gauss points[

The pressure _eld is interpolated in terms of four parameters^ each of them is the value of the
pressure _eld at one of the four Gauss points of Be[ The shape functions are]

Mi"j\ h# �
0
3 00¦ai

j

j`1 00¦bi

h

h`1 "26#

where j` � h` � 0:z2[
The expression of the spherical part of the strain _eld can be evaluated from the displacement

vector u by means of the spherical part BS of the discrete gradient operator B as follows]

ož

s "j\ h# �

K

G

H

H

G

k

oj

oh

oz

gjh

L

G

H

H

G

l

� BS"j\ h#u[

The matrix BS\ expressed in terms of the shape functions ci\ is given by]

BS �
0
2

K

H

H

H

H

k

cj
0 ch

0 cj
1 [ [ [ [ [ [ [ [ [ [ [ [ ch

3

cj
0 ch

0 cj
1 [ [ [ [ [ [ [ [ [ [ [ [ ch

3

cj
0 ch

0 cj
1 [ [ [ [ [ [ [ [ [ [ [ [ ch

3

9 9 9 [ [ [ [ [ [ [ [ [ [ [ [ 9

L

H

H

H

H

l

where cž

i represents the derivative of the function ci with respect to ,[ Accordingly the sub!space
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PSTUn is generated by the functions "e¼0\ e¼1\ e¼3\ e¼4# which represent the four linearly independent
columns of the matrix BS[

The spherical part of the strain _eld in the element Be is now evaluated from the pressure _eld
r"j\ h# � M"j\ h# = r and is given by]

ož

s "j\ h# �

K

H

H

H

H

k

oj

oh

oz

gjh

L

H

H

H

H

l

�
0

2K
r"j\ h#m �

0
2K

ðm & M"j\ h#Łr

where m � ð0 0 0 9Łt[ The rows of the matrix m & M"j\ h# are given by the assumed shape
functions of the pressure _eld "26# and the columns of the matrix m & M are denoted by h¼ i where
i � 0\ [ [ [ \ 3[

The inclusion "25# can then be checked on the basis of a theorem of linear algebra "Luenberger\
0862#] a set of vectors "a0\ a1\ [ [ [ \ ap# belonging to a linear space A endowed with a scalar product
"=\ =# is linearly independent if and only if the Gramm matrix G de_ned as Gij �"ai\ aj# is not
singular[

Accordingly the _rst step consists in evaluating the Gramm matrix Gh related to the functions
h¼ i[ Since we have]

det

K

H

H

H

H

k

"h¼0\ h¼0# "h¼0\ h¼1# "h¼0\ h¼2# "h¼0\ h¼3#

"h¼1\ h¼0# [ [ [ [ [ [ [ [ [

"h¼2\ h¼0# [ [ [ [ [ [ [ [ [

"h¼3\ h¼0# [ [ [ [ [ [ "h¼3\ h¼3#

L

H

H

H

H

l

� 2 det

K

H

H

H

H

k

0 9 9 9

9 0 9 9

9 9 0 9

9 9 9 0

L

H

H

H

H

l

� 9

it can be deduced that the functions "h¼ i# provide a basis for the space E−0
S Sm[

The second step consists in adding the functions "e¼0\ e¼1\ e¼3\ e¼4# to the set "h¼0\ h¼1\ h¼2\ h¼3# and in
evaluating the relevant Gramm matrix Ghei[ A direct calculation shows that]

det

K

H

H

H

H

H

k

2 9 9 9 "h¼0\ e¼ j#

9 2 9 9 "h¼1\ e¼ j#

9 9 2 9 "h¼2\ e¼ j#

9 9 9 2 "h¼3\ e¼ j#

"h¼0\ e¼ j# "h¼1\ e¼ j# "h¼2\ e¼ j# "h¼3\ e¼ j# "e¼ j\ e¼ j#

L

H

H

H

H

H

l

� 9

for any e¼j where j � 0\ 1\ 3\ 4[ We can then conclude that the vectors "e¼0\ e¼1\ e¼3\ e¼4# spanning the
subspace PSTUn are linearly dependent from "h¼0\ h¼1\ h¼2\ h¼3# so that the inclusion "25# is ful_lled and
the solutions in terms of displacements obtained from the mixed displacement:pressure approach
and from the displacement one coincide[

5[0[ A numerical simulation

A _nite element analysis of the tapared plate reported in Fig[ 0 is performed by adopting the
mixed displacement:pressure method and the displacement!based approach[ The quadrilateral
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Fig[ 6[ The displacements of the top corner node of the tapared plate obtained from the u:p formulation and the
displacement method under the validity of the limitation principle for the three values of the Poisson|s ratio[

element analysed in the previous section is considered[ The Young|s modulus is E � 69 KN:mm1

and the three di}erent values of the Poisson|s ratio are n0 � 9[2\ n1 � 9[3\ n2 � 9[3888[ The load
condition is represented by a tangential vertical load q � 09 N:mm1[ The displacements of the top
corner node evaluated for the di}erent meshes of Fig[ 0 and for the three values of the Poisson|s
ratio are reported in Fig[ 6[ The computed displacements turn out to be coincident in agreement
with the limitation principle[

6[ Elastoplastic behaviour

A rate!independent standard elastoplastic model with mixed hardening\ representing the Gen!
eralized Standard Material "GSM# initially proposed by Halphen and Nguyen "0864#\ is now
derived from the GEM[

The kinematic and isotropic hardening is introduced by means of two static internal variable
_elds x0 $ X? and x1 $ R[ The elastic domain C U S×X?×R is de_ned in terms of stress _elds and
static internal variable _elds so that the back!stress x0 provides the shift of the elastic domain C
and x1 gives a measure of the expansion of C[ The kinematic internal variable _elds a0 $ X and
a1 $ R are dual of x0 and x1[

The kinematic and static internal variables can be grouped into two vectors a � ða0 a1Łt and
x � ðx0 x1Łt[ The generalized total\ elastic and plastic strain _elds\ denoted by eÝ\ pÝ and oÝ\ and the
generalized stress _eld sÝ can be de_ned in the form]

eÝ � $
e

a% pÝ � $
p

−a% oÝ� $
o

9% sÝ � $
s

x% [
The kinematic operator TÝ is `iven by TÝ � ðT 9 9Łt and the scalar product between generalized
variables is de_ned by AsÝ\ eÝa � ðs\ eŁ¦ðx0\ a0Ł¦ðx1\ a1Ł[



L[ De Vivo\ F[ Marotti de Sciarra : International Journal of Solids and Structures 25 "0888# 4066Ð41954087

It is well known that the computational solution of an elastoplastic problem is obtained by
solving a sequence of _nite!step problems[ According to a fully implicit integration scheme "Euler
backward di}erence# "Ortiz and Simo\ 0875#\ each _nite!step problem amounts to evaluating the
unknown variables ",# at the time tn¦0 starting from the known values ",#9 at the beginning of the
time step tn[

A generalized complementary relation is considered\ in which a limitation is imposed on the
range of the stress _eld by means of the convex indicator = =C of the elastic domain[ Denoting by
`� the complementary free energy "Lubliner\ 0889#\ we get

F�"sÝ# � `�"sÝ#¦= =C"sÝ#¦AsÝ\ pÝ9a[ "27#

The generalized energy F for the GEM is provided by the conjugate of "27#[ Recalling that the
conjugate of the sum of convex functionals is given by the inf!convolution of the conjugate of the
addends "Hiriart!Urruty and Lemare�chal\ 0882#]

`"eÝ# � sup "AsÝ\ eÝa−`�"sÝ##

D"pÝ−pÝ9# � sup "AsÝ\ pÝ−pÝ9a−= =C"sÝ##

the following explicit expression is obtained]

F"oÝ# � inf "`"eÝ¹#¦D"pÝ¹−pÝ9# = eÝ¹¦pÝ¹ � oÝ# � `"eÝ#¦D"pÝ−pÝ9#[ "28#

The in_mum is attained in correspondence of a point "eÝ\ pÝ# such that the following conditions are
ful_lled]

eÝ $ 1`�"sÝ# "pÝ−pÝ9# $ NC"sÝ# eÝ¦pÝ � oÝ "39#

where NC"sÝ# � 1= =C"sÝ# is the normal cone to the elastic domain C at the point sÝ $ 1F"oÝ#[
Relations "39# provide the elastoplastic constitutive model for the GSM^ in fact "39#0 yields the

elastic and hardening relations\ "39#1 provides the _nite!step ~ow rule and "39#2 represents the
strain additivity[

In many problems of structural interest\ the elastic domain is de_ned in terms of deviatoric
stress _elds so that the dissipation can be expressed in the form]

D"pÝ−pÝ9# � sup "APÝDsÝ\ PÝD"pÝ−pÝ9#a = PÝDsÝ $ C#

¦sup "APÝ SsÝ\ PS"pÝ−pÝ9#a = PÝ SsÝ $ S×X?×R#

� DD ðPÝD"pÝ−pÝ9#Ł¦sup "APÝ SsÝ\ PÝ S"pÝ−pÝ9#a = PÝ SsÝ $ S×X?×R#

where PÝD � diag ðPD PD 0Ł and PÝ S � diag ðPS PS 9Ł are projector operators[
Moreover the free energy `"eÝ# can be additively decomposed as the sum of the elastic energy\

given by a convex functional `el"e#\ and of a convex hardening potential `h"a# which describes the
role of the internal variables in the hardening processes[ In terms of spherical and deviatoric strain
_elds\ we have]

`"eÝ# � `S"PÝ SeÝ#¦`D"PÝDeÝ# where 6
`S"PÝ SeÝ# � `el

S "PSe#¦`h
S"PSa0#

`D"PÝDeÝ# � `el
D"PDe#¦`h

D"PDa0\ a1#[
"30#
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The modi_ed form of the HuÐWashizu principle reported in Proposition 2[2 is thus specialized to
the GSM in the next]

Proposition 6[0[ Elastoplastic HuÐWashizu principle[ A vector "u\ PÝ SsÝ\ PÝDpÝ\ PÝ SeÝ# is a solution of
the minimization problem]

stat
PÝSsÝ

min
u\PÝSsÝ\PÝDpÝ\PÝSeÝ

S0"u\ PÝ SsÝ\ PÝDpÝ\ PÝ SeÝ# "31#

where]

S0"u\ PÝ SsÝ\ PÝDpÝ\ PÝ SeÝ# � `S"PÝ SeÝ#¦`D ðPÝD"TÝu−pÝ#Ł¦DD ðPÝD"pÝ−pÝ9#Ł−Y"u#

¦APÝ SsÝ\ PÝ S"TÝu−eÝ−pÝ9#a−ðl\ uŁ

if and only if it is a solution of the elastoplastic structural problem[ �

A mixed _nite element approximation can be derived from this variational principle which
represents the elastoplastic version of the B!bar method\ see Simo et al[ "0874#[

The specialization of the modi_ed HellingerÐReissner principle reported in Proposition 2[3 is]

Proposition 6[1[ Elastoplastic HellingerÐReissner principle[ A vector "u\ PÝ SsÝ\ pÝ# is a solution of the
minimization problem]

stat
PÝSsÝ

min
u\PÝDpÝ

S1"u\ PÝ SsÝ\ pÝ# "32#

where]

S1"u\ PÝ SsÝ\ pÝ# � `S ðPÝ S"TÝu−pÝ#Ł¦`D ðPÝD"TÝu−pÝ#Ł¦DD ðPÝD"pÝ−pÝ9#Ł−Y"u#

¦APÝ SsÝ\ PÝ S"pÝ−pÝ9#a−ðl\ uŁ

if and only if it is a solution of the elastoplastic structural problem[ �

It is worth noting that the spherical plastic strain _eld p and the spherical internal variable _elds
x0 and a0 do not enter into the elastoplastic formulation since they are purely deviatoric _elds as
shown in Appendix II so that\ from "30#\ we have `S"PÝ SeÝ# � `el

S "PSe#[ Accordingly the free energy
"28# can be rewritten as]

F"oÝ# � `el
S "PSe#¦`D"PÝDeÝ#¦DD ðPÝD"pÝ−pÝ9#Ł

and it turns out to be FS"PÝ SoÝ# � `el
S "PSe#[

If the following interpolating spaces

vž $ Un PSs
ž

s $ Sm PSež $ Dq PDpž $ D` PDaž

0 $ X0b až

1 $ X1c "33#

are assumed for the variables involved in the potentials S0 and S1\ the limitation principle reported
in the Proposition 3[0 can be specialized to the GSM to get]

Proposition 6[2[ The solutions of the two approximate elastoplastic problems derived from the
weak forms associated with "31# and "32# coincide in terms of "vž\ PSs

ž

s \ PDpž\ PDaž

0\ až

1# if the same
interpolating spaces Un\ Sm\ D`\ X0b\ X1c are assumed and

Sm U 1`el
S "Dq#[ "34# �
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The same interpolating subspaces for spherical elastic strains and stresses have been adopted in
the elastoplastic _nite element analysis based on the HuÐWashizu principle performed in Simo et
al[ "0874#[ According to the above limitation principle\ solutions in terms of displacements\
spherical stresses and plastic strains derived from the elastoplastic version of the HuÐWashizu
principle and can be obtained from the simplest elastoplastic HellingerÐReissner formulation[

We remark that the complementary elastic energy does not appear in the elastoplastic HellingerÐ
Reissner potential S1 while it is present in the elastic HellingerÐReissner formulation\ see the weak
form "22#[ Accordingly no further di.culty arises in an elastoplastic _nite element method based
on the two!_eld HellingerÐReissener principle compared with the elastoplastic _nite element
method based on the B!bar three!_eld variational formulation[

6[0[ A numerical simulation

An elastoplastic analysis of the perforated strip shown in Fig[ 7 with displacement controlled
stretching is investigated by adopting the B!bar formulation and the displacement:pressure
approach[ A linear elastic behaviour and a linear mixed hardening are considered and the same
interpolating spaces for the pressure _eld and for the elastic volumetric _eld are assumed so that
the limitation principle 6[2 is ful_lled[

The material properties\ corresponding to a commercial steel\ are Young|s modulus E � 1[0×097

N:m1\ Poisson|s ratio n � 9[2\ initial yield threshold s9 � 1[3×097 N:m1[ The external load is
represented by an imposed displacement of 19 cm[ Only a quarter of strip has been considered for
symmetry reasons[

The equivalent plastic strains are evaluated at the Gauss points of the element 0 of Fig[ 7[ In
Fig[ 8 the equivalent plastic strains are reported in the case of perfect plasticity "Hkin � Hiso � 9
N:m1# and in Fig[ 09 the case of mixed hardening with hardening moduli Hkin � Hiso � 096 N:m1

is addressed[ In agreement with the limitation principle 6[2\ the results of the numerical analysis
obtained from the two mixed formulations turn out to be coincident[

7[ Closure

A general treatment of the variational formulations associated with the generalized elastic
material is provided and the complete set of limitation principles for the generalized elastic material
is presented[ This approach allows us to specialize these principles to elastic and elastoplastic
models without repeating ad hoc reasoning[

In the B!bar method the same interpolating spaces are usually assumed in the literature for the
pressure _eld and for the volumetric strain _eld[ Actually this choice ful_ls a limitation principle
reported in the paper so that there is no additional accuracy in terms of displacement and pressure
_elds if the "three!_eld# B!bar method is used instead of the displacement:pressure formulation[

Moreover an analytical condition is proved which ensures the coincidence\ in terms of dis!
placements\ of the approximate solutions obtained from the mixed displacement:pressure approach
and from the displacement method[

The specialization of a limitation principle to an elastoplastic behaviour "GSM# with mixed
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Fig[ 7[ A quarter of an elastoplastic perforated strip with displacement controlled stretching[

hardening is provided starting from the corresponding principle pertaining to the GEM[ It is
further shown that some interpolating _elds usually adopted in the computational literature
for the elastoplastic B!bar mixed _nite element discretizations ful_l a limitation principle[
Accordingly a two!_eld mixed formulation can be successfully adopted instead of a three!_eld
approach[
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Fig[ 8[ The equivalent plastic strains at the Gauss points of the element n[ 0 of Fig[ 7 evaluated by adopting the B!bar
method and the u:p formulation under the validity of the limitation principle[ Elastic!perfectly plastic behaviour[

Fig[ 09[ The equivalent plastic strains at the Gauss points of the element n[ 0 of Fig[ 7 evaluated by adopting the B!bar
method and the u:p formulation under the validity of the limitation principle[ Elastoplastic behaviour with mixed
hardening[

Great care must then be paid to the choice of the interpolating spaces in mixed formulations
and limitation principles provide a guideline to check if no additional accuracy is obtained by
adopting a mixed formulation with a greater number of unknown _elds[

Numerical examples are reported to provide the e}ectiveness of the limitation principles in
elasticity and in elastoplasticity with mixed hardening[
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Appendix I*Some results of convex analysis

Let us recall some basic de_nitions and properties of convex analysis\ e[g[\ Moreau "0855#\
Rockafellar "0869#\ Hiriart!Urruty and Lemare�chal "0882# which are used in the paper[

Let "X\ X?# be a pair of Hilbert spaces placed in separating duality by a bilinear form ð= \ =Ł and
consider the convex functional ` ] XŁR * "¦�#[ We shall denote by RÞ the set
"−�# * R * "¦�#[
, A graph G"M# is said to be monotone if]

ðx�1−x�0\ x1−x0Ł − 9 ["x�0\ x0#\"x�1\ x1# $ G"M#[

The graph G"M# is maximal monotone\ if no point "x\ x�# can be added to the graph without
violating the monotonicity property[

, A sublinear functional ` ] XŁRÞ meets the following properties]

`"ax# � a`"x# [a − 9 "positive homogeneity#

`"x0#¦`"x1# − `"x0¦x1# [x0\ x1 $ X "subadditivity#
[

, The one!sided Gateaux derivative of ` at the point x9 belonging to the domain of ` along the
direction given by the vector x $ X\ is the sublinear functional f ] XŁRÞ de_ned by]

f"x# � d`"x9^ x# � lim
o:9¦

0
o
ð`"x9¦ox#−`"x9#Ł[

, If the sublinear functional f is proper\ the subdi}erential of the functional ` is the multi!valued
map 1`] XŁX?\ de_ned by]

1`"x9# � "x� $ X?] f"x# − ðx�\ xŁ [x $ X#[

In particular\ if the functional ` is di}erentiable at x9 $ X\ the subdi}erential is a singleton and
coincides with the usual di}erential[

, The conjugate of a convex functional ` is the convex functional `�] X?ŁR k "¦�# de_ned
by]

`�"x�# � sup
y$X

"ðx�\ yŁ−`"y##[

The pairs "x\ x�# for which the {sup| is attained are said to be conjugate and\ provided that ` is
closed\ i[e[ `�� � `\ the following Fenchel|s relations are equivalent]

x $ 1`�"x�# x� $ 1`"x# `"x#¦`�"x�# � ðx�\ xŁ[

, A functional ` ] XŁRÞ is lower semicontinuous if]

lim inf
x¹:x

`"x¹ # − `"x# [x¹ $ X[
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A convex functional ` is closed\ i[e[ `�� � `\ if and only if it is l[s[c[
A relevant example of conjugate functionals is provided by the indicator = =K and the support

functional = =�K of a convex set K]

= =K"x# � 6
9 if x $ K

¦� otherwise
= =�K"x�# � sup

x$K
ðx�\ xŁ[

, Given two convex functionals `0] XŁR k "¦�# and `1] XŁR k "¦�# which are sub!
di}erentiable at x $ X\ it turns out to be]

1"`0¦`1#"x# � 1`0"x#¦1`1"x#[

Analogous results hold for concave functionals by interchanging the role of ¦�\ −\ {sub| and
{sup| with those of −�\ ¾\ {super| and {inf|[

Appendix II*Stationarity conditions

The stationarity of the elastoplastic HuÐWashizu principle reported in Proposition 6[0 provides
the following weak equations]

ðd`el
D ðPD"Tu−p#Ł\ PDTu¹Ł¦ðPSs\ PSTu¹Ł � ðl\ u¹Ł [u¹ $ L9

ðPSs¹ \ PS"Tu−e−p9#Ł � 9 [PSs¹ $ S

ðPSx¹0\ PS"a0−a09
#Ł � 9 [PSx¹0 $ X?

ðd`el
S "PSe#\ PSe¹Ł−ðPSs\ PSe¹Ł � 9 [PSe¹ $ D

ðd`h
S"PSa0#\ PSa¹0Ł−ðPSx0\ PSa¹0Ł � 9 [PSa¹0 $ X

dDD ðPÝD"pÝ−pÝ9#^ PÝDp¹Ý Ł − A &
d`el

D ðPD"Tu−p#Ł

dPDa0
`h

D"PDa0\ a1#

da1
`h

D"PDa0\ a1#
' \ &

PDp¹
−PDa¹0

−a1
'a [PÝDp¹Ý $ DÝ [

"35#

Relation "35#0 is the weak form of the equilibrium equation in which the deviatoric part of the
constitutive elastic relation is enforced in terms of the deviatoric compatibility condition[ Relations
"35#1Ð2 show that the increments of the plastic strain _eld "Tu−e#−p9 and of the kinematic internal
variable _eld a0−a09

are deviatoric[ Relation "35#3 provides the expression of the spherical part
of the constitutive elastic relation[ The spherical part of the static internal variable _eld x0 is
obtained from "35#4 as the derivative of the hardening potential with respect to the spherical part
of the internal variable _eld a0[ According to relation "35#2\ a0 is deviatoric so that the spherical
part of x0 must vanish[ Relation "35#5 yields the _nite!step ~ow rule between the deviatoric parts
of s\ x0 and the internal variable x1\ de_ned in terms of the constitutive relations\ and the increments
PD"p−p9#\ PD"a0−a09

# and a1−a19
[

The stationarity of the elastoplastic HellingerÐReissner principle reported in Proposition 6[1
provides the following weak equations]
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ðd`el
S ðPS"Tu−p#Ł\ PSTu¹Ł¦ðd`el

D ðPD"Tu−p#Ł\ PDTu¹Ł � ðl\ u¹Ł [u¹ $ L9

ðPSs¹ \ PS"p−p9#Ł � 9 [PSs¹ $ S

ðPSxÞ0\ PS"a0−a09
#Ł � 9 [PSxÞ0 $ X?

ðd`el
S ðPS"Tu−p#Ł\ PSp¹Ł−ðPSs\ PSp¹Ł � 9 [PSp¹ $ D

ðd`h
S"PSa0#\ PSa¹0Ł−ðPSx0\ PSa¹0Ł � 9 [PSa¹0 $ X

dDD ðPÝD"pÝ−pÝ9#^ PÝDp¹Ý Ł − A &
d`el

D ðPD"Tu−p#Ł

dPDa0
`h

D"PDa0\ a1#

da1
`h

D"PDa0\ a1#
' \ &

PDp¹

−PDa¹0

−a1
'a [PÝDp¹Ý $ DÝ [

"36#

Relation "36#0 is the weak form of the equilibrium equation where the spherical and deviatoric
constitutive elastic relations in terms of compatible elastic strain _elds are enforced[ Relations
"36#1Ð2 show that the increments of the plastic strain _eld p−p9 and of the kinematic internal
variable _eld a0−a09

are deviatoric[ Relation "36#3 provides the expression of the spherical part
of the stress _eld s[ The spherical part of the static internal variable _eld x0 is obtained from "36#4

as the derivative of the hardening potential with respect to the spherical part of the internal variable
_eld a0[ According to relation "36#2\ the spherical part of x0 must vanish being a0 deviatoric[
Relation "36#5 yields the _nite!step ~ow rule between the deviatoric parts of s\ x0 and the expression
of x1\ de_ned in terms of the constitutive relations\ and the increments PD"p−p9#\ PD"a0−a09

#
and a1−a19

[

References

Alfano\ G[\ Marotti de Sciarra\ F[\ 0885[ Mixed _nite element formulations and related limitation principles] a general
treatment[ Comput[ Methods Appl[ Mech[ Engrg "special issue on its 14th Anniversary# 027\ 094Ð029[

Babuska\ I[\ 0862[ The _nite element method with lagrangian multipliers[ Numer[ Math[ 19\ 068Ð081[
Brezzi\ F[\ 0863[ On the existence\ uniqueness and approximation of saddle!point problems arising from lagrangian

multipliers[ R[A[I[R[O[ Anal[ Numer[ 1\ 018Ð040[
Brezzi\ F[\ Fortin\ M[\ 0880[ Mixed and Hybrid Finite Element Methods[ Springer!Verlag[
Comi\ C[\ Perego\ U[\ 0884[ A uni_ed approach for variationally consistent _nite elements in elastoplasticity[ Comput[

Methods Appl[ Mech[ Engrg 010\ 213Ð233[
Gadala\ M[S[\ 0875[ Numerical solutions of nonlinear problems of continua*II[ Survey of incompressibility constraints

and software aspects[ Comput[ Struct[ 11\ 730Ð744[
Gadala\ M[S[\ Oravas\ G[A[E[\ 0873[ Numerical solutions of nonlinear problems of continua*I[ Survey of formulation

methods and solution techniques[ Comput[ Struct[ 08\ 754Ð766[
Halphen\ B[\ Nguyen\ Q[S[\ 0864[ Sur les mate�riaux standards ge�ne�ralise�s[ J[ de Mec[ 03\ 28Ð52[
Hiriart!Urruty\ J[B[\ Lemare�chal\ C[\ 0882[ Convex Analysis and Minimization Algorithms I[ Springer!Verlag\ New

York[
Hughes\ T[J[R[\ 0866[ Equivalence of _nite elements for nearly incompressible elasticity[ J[ Appl[ Mech[ pp[ 070Ð072[
Key\ S[W[\ 0858[ A variational principle for incompressible and nearly!incompressible anisotropic elasticity[ Int[ J[

Solids Structures 4\ 840Ð853[
Lubliner\ J[\ 0889[ Plasticity Theory[ Macmillan Publishing Company\ New York[
Luenberger\ D[G[\ 0862[ Optimization by Vector Space Methods[ John Wiley and Sons\ New York[



L[ De Vivo\ F[ Marotti de Sciarra : International Journal of Solids and Structures 25 "0888# 4066Ð41954195

Malkus\ D[S[\ Hughes\ T[J[R[\ 0867[ Mixed _nite element methods*reduced and selective integration techniques[
Comput[ Methods Appl[ Mech[ Engrg 04\ 52Ð70[

Moreau\ J[J[\ 0855[ Fonctionelles Convexes[ Lecture Notes\ Se�minaire Equationes aux de�rive�es partielles\ Colle�gie de
France[

Nagtegaal\ J[C[\ Parks\ D[M[\ Rice\ J[R[\ 0863[ On numerically accurate _nite element solutions in the fully plastic
range[ Comput[ Methods Appl[ Mech[ Engrg 3\ 042Ð066[

Oden\ J[T[\ Carey\ G[F[\ 0872[ Finite Elements\ vols II and IV[ Prentice!Hall\ New Jersey[
Oden\ J[T[\ Kikuchi\ N[\ 0871[ Finite element methods for the constrained problems in elasticity[ Int[ J[ Num[ Meth[

Engrg 07\ 690Ð614[
Ortiz\ M[\ Simo\ J[C[\ 0875[ An analysis of a new class of integration algorithms for elasto!plastic constitutive relations[

Int[ J[ Num[ Meth[ Engng 12\ 242Ð255[
Panagiotopoulos\ P[D[\ 0874[ Inequality Problems in Mechanics and Applications[ Birkhauser[
Pastor\ M[\ Quecedo\ M[\ Zienkiewicz\ O[C[\ 0886[ A mixed displacement!pressure formulation for numerical analysis

of plastic failure[ Comput[ Struct[ 51\ 02Ð12[
Pitkaranta\ J[\ Stenberg\ R[\ 0873[ Error bounds for the approximation of the Stokes problem using bilinear:constant

elements on irregular quadrilateral meshes[ Rept[ MAT!A111\ Helsinki University of Technology[
Reissner\ E[\ 0873[ On a variational principle for elastic displacements and pressure[ J[ Appl[ Mech[ 40\ 333Ð334[
Rockafellar\ R[T[\ 0869[ Convex Analysis[ Princeton University Press[
Romano\ G[\ 0883[ Elasticita� generalizzata[ Proc[ IX Congresso Naz[ AIAS\ Rende[
Romano\ G[\ Rosati\ L[\ Marotti de Sciarra\ F[\ 0881[ Variational formulations of non!linear and non!smooth structural

problems[ Int[ J[ Nonlin[ Mech[ 17\ 1\ 084Ð197[
Romano\ G[\ Rosati\ L[\ Marotti de Sciarra\ F[\ 0882a[ A variational theory for _nite!step elasto!plastic problems[ Int[

J[ Solids Struct[ 29\ 06\ 1206Ð1223[
Romano\ G[\ Rosati\ L[\ Marotti de Sciarra\ F[\ Bisegna\ P[\ 0882b[ A potential theory for monotone multi!valued

operators[ Quart[ Appl[ Math[ LI "3#\ 502Ð520[
Simo\ J[C[\ Taylor\ R[L[\ 0880[ Quasi incompressible _nite elasticity in principal stretches] continuum basis and numerical

algorithms[ Comput[ Methods Appl[ Mech[ Engrg 74\ 162Ð209[
Simo\ J[C[\ Taylor\ R[L[\ Pister\ K[S[\ 0874[ Variational and projection methods for the volume constraint in _nite

deformation elasto!plasticity[ Comput[ Methods Appl[ Mech[ Engrg 40\ 066Ð197[
Stolarski\ H[\ Belytschko\ T[\ 0876[ Limitation principles for mixed _nite element based on the Hu!Washizu variational

formulation[ Comput[ Methods Appl[ Mech[ Engrg 59\ 084Ð105[
Sussman\ T[\ Bathe\ K[J[\ 0876[ A _nite element formulation for nonlinear incompressible elastic and inelastic analysis[

Comput[ Struct[ 15\ 246Ð398[
Vainberg\ M[M[\ 0853[ Variational Methods for the Study of Nonlinear Operators[ Holden!Day\ San Francisco[
Weiss\ J[A[\ Maker\ B[N[\ Govindjee\ S[\ 0885[ Finite element implementation of incompressible\ transversely isotropic

hyperelasticity[ Comput[ Methods Appl[ Mech[ Engrg 024\ 096Ð017[
Zienkiewicz\ O[C[\ Taylor\ R[L[\ 0880[ The Finite Element Method\ 3th ed[ McGraw!Hill\ New York[


